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Abstract. The energy (due to matter plus fields including gravity) distribution of the Reissner–Nordström
anti-de Sitter (RN AdS) black holes is studied by using the Møller energy-momentum definition in general
relativity. This result is compared with the energy expression obtained by using the Einstein and Tolman
complexes. The total energy depends on the black hole massM and charge Q and the cosmological constant
Λ. The energy distribution of the RN AdS is also calculated by using the Møller prescription in teleparallel
gravity. We get the same result for both of these different gravitation theories. The energy obtained is also
independent of the teleparallel dimensionless coupling constant, which means that it is valid not only in the
teleparallel equivalent of general relativity, but also in any teleparallel model. In special cases of our model,
we also discuss the energy distributions associated with the Schwarzschild AdS, RN and Schwarzschild black
holes, respectively.

PACS. 04.20.-q; 04.20.Jb; 04.50.+h

1 Introduction

The localization of gravitational energy-momentum still
remains one of the distinguished problems and this sub-
ject continues to be one of the most active areas of research
in both general relativity and teleparallel gravity (the
tetrad theory of gravity). Many attempts have been per-
formed to obtain local or quasi-local energy-momentum.
However, there is no generally accepted definition. Mis-
ner, Thorne and Wheeler [1] claimed that the energy is
localizable only for spherical systems. But Cooperstock
and Sarracino [2] argued that if the energy is localizable
in spherical systems, it is localizable in all systems. To
solve this problem, several researcher have proposed dif-
ferent energy-momentum definitions [3–10]. The funda-
mental difficulty with these definitions is that they are
coordinate dependent. Therefore, if the calculations are
carried out in “Cartesian” coordinates, these complexes
can give a reasonable and meaningful result. Several re-
searcher supposed that energy-momentum complexes were
not well-defined measures because of the variety of such
ones. Recently, however, the subject of the definition of
the energy-momentum has been re-opened by Virbhadra
and his collogues [11–13].
The Møller energy-momentum prescription does not

necessitate carrying out a calculation in “Cartesian” coor-
dinates, while the others do. Therefore, we can calculate
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the energy density in any coordinate system. Lessner [14]
argued that the Møller prescription is a powerful con-
cept of energy-momentum in general relativity. A telepar-
allel version of this complex was obtained by Mikhail et
al. [15]. In his recent paper, Vargas [16], using the Einstein
and Landau–Lifshitz complexes, calculated the energy-
momentum density of the Friedman–Robertson–Walker
space-time. Recently, Saltı, Aydogdu and their collabora-
tors [17–20] have calculated the energy-momentum dens-
ity, using different complexes for a given space-time in the
teleparallel gravity.
Since the RN AdS black hole is a standard example to

study the AdS/CFT correspondence [21] and some strik-
ing resemblance of the RN AdS phase structure to that
of the Van der Waals–Maxwell liquid–gas system has been
observed, and some classical critical phenomena have also
been uncovered [22], the study of this black hole model is
appealing.
The solution of the RN AdS black holes for free space

with a negative cosmological constant Λ=−3/l2 is defined
by the line-element given here:

ds2 = gµνdx
µdxν = χdt2−χ−1dr2− r2(dθ2+sin2 θdϕ2) ,

(1)

where

χ= 1−
2M

r
+
Q2

r2
+
r2

l2
. (2)

The asymptotic form of this line-element is AdS. There is
an outer horizon located at r = r+. The mass of the black
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hole is given by

2M = r++
r3+
l2
+
Q2

r+
. (3)

The Hawking temperature is

TH =
1

4πr+

(
1−
Q2

r2+
+
3r2+
l2

)
, (4)

and the potential is

φ=
Q

r+
. (5)

In the extreme case r+ andQ satisfy the following relation:

1−
Q2

r2+
+
3r2+
l2
= 0 . (6)

For RN AdS black holes, the non-vanishing compo-
nents of the Einstein tensor Gµν (≡ 8πTµν , where Tµν is
the energy-momentum tensor for the matter field described
by a perfect fluid of density ρ and pressure p) are

G11 =
1

r2χ
[χ+ rχ′−1] , (7)

G22 =
r

2
[rχ′′+2χ′] , (8)

G33 =
1

2
r sin2 θ[rχ′′+2χ′] , (9)

G00 =
−χ

r2
[χ+ rχ′−1] , (10)

where the prime represents differentiation with respect
to r.
The energy distributions of a charged dilaton black hole

and Schwarzschild black hole in a magnetic universe have
been obtained by Xulu [13]. Radinschi [13], using Tolman’s
prescription, obtained the energy distribution of a dilaton
dyonic black hole and her result is also the same as the re-
sult found by I-Ching Yang et al. [35]. It is of interest to
investigate the energy distribution associated with a RN
AdS black hole model. We hope to find the same and an ac-
ceptable energy distribution in both general relativity and
teleparallel gravity.

2 Gravitational energy

The matrix form of the metric tensor gµν for the line-
element (1) is defined by⎛
⎜⎜⎜⎜⎝

(
1− 2M

r
+ Q

2

r2
+ r

2

l2

)
0 0 0

0 − 1

1− 2Mr +
Q2

r2
+ r
2

l2

0 0

0 0 −r2 0
0 0 0 −r2 sin2 θ

⎞
⎟⎟⎟⎟⎠ ,

(11)

and its inverse matrix gµν is
⎛
⎜⎜⎜⎜⎝

1

1− 2Mr +
Q2

r2
+ r
2

l2

0 0 0

0 −(1− 2M
r
+ Q

2

r2
+ r

2

l2
) 0 0

0 0 − 1
r2

0
0 0 0 − 1

r2 sin2 θ

⎞
⎟⎟⎟⎟⎠ .

(12)

The general form of the tetrad, eµi , having spherical sym-
metry, was given by Robertson [23]. In the Cartesian form
it can be written as

e00 = iΥ , e0a = κx
a , eα0 = iΠx

α ,

eαa = ζδ
α
a +Ψx

axα+ εaαβ∆x
β , (13)

where Υ, ζ, κ,Π, Ψ , and ∆ are functions of t and r =√
xaxa, and the zeroth vector eµ0 has the factor i =

√
−1

to preserve the Lorentz signature. We impose the bound-
ary condition that in the case of r→∞ the tetrad given
above approaches the tetrad of Minkowski space-time,
eµa = diag(i, δ

µ
a ) (where a= 1, 2, 3). In the spherical, static

and isotropic coordinate systems X1 = r sin θ cosφ, X2 =
r sin θ sinφ, X3 = r cos θ, the tetrad components of the
RN AdS space-time can be obtained from the line-element
given in (1), using the general coordinate transformation

eaµ =
∂Xν

∂Xµ eaν .

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i√
1− 2M

r +
Q2

r2
+ r2

l2

0 0 0

0

⎛
⎜⎝

√
1−
2M

r
+
Q2

r2
+
r2

l2

× sin θ cosφ

⎞
⎟⎠
( 1

r
cos θ

× cosφ

)
−
sinφ

r sin θ

0

⎛
⎜⎝

√
1−
2M

r
+
Q2

r2
+
r2

l2

× sin θ sin φ

⎞
⎟⎠
( 1

r
cos θ

× sinφ

)
cosφ

r sin θ

0

⎛
⎜⎝

√
1−
2M

r
+
Q2

r2
+
r2

l2

× cos θ

⎞
⎟⎠ −

1

r
sin θ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(14)

2.1 The Møller energy in general relativity

In general relativity, the energy-momentum complex of
Møller [9] is given by

Mνµ =
1

8π
Σναµ,α (15)

satisfying the local conservation laws

∂Mνµ
∂xν

= 0 , (16)

where the antisymmetric super-potential Σναµ is

Σναµ =
√
−g[gµβ,γ− gµγ,β]g

νγgαβ . (17)
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The locally conserved energy-momentum complex Mνµ
contains contributions from the matter, non-gravitational
and gravitational fields. M00 is the energy density and the
M0a are the momentum density components. The momen-
tum four-vector of Møller is given by

Pµ =

∫ ∫ ∫
M0µdxdydz . (18)

Using Gauss’s theorem, this definition transforms into

Pµ =
1

8π

∫ ∫
Σ0aµ µadS . (19)

where µa (where a = 1, 2, 3) is the outward unit normal
vector over the infinitesimal surface-element dS. Pi give
the momentum components P1, P2, P3 and P0 gives the
energy.
Using the matrices given in (11) and (12), the required

non-vanishing component of Σναµ is

Σ010 = 2 sin θ

[
M −

Q2

r
+
r3

l2

]
. (20)

From this point of view, the energy of the RN AdS black
holes in general relativity is found as given by

E(r) =M −
Q2

r
+
r3

l2
. (21)

2.2 The Møller energy in teleparallel gravity

The teleparallel theory of gravity (the tetrad theory of
gravitation) is an alternative approach to gravitation and
corresponds to a gauge theory for the translation group
based on the Weitzenböck geometry [24]. In the theory
of teleparallel gravity, gravitation is attributed to tor-
sion [25], which plays the role of a force [26], and the
curvature tensor vanishes identically. The essential field
is acted by a non-trivial tetrad field, which gives rise
to the metric as a by-product. The translational gauge
potentials appear as the non-trivial items of the tetrad
field, so they induce on space-time a teleparallel struc-
ture which is directly related to the presence of the
gravitational field. The interesting thing of teleparallel
theory is that, due to its gauge structure, it can reveal
a more appropriate approach to considering some spe-
cific problem. This is the situation, for example, in the
energy and momentum problem, which becomes more
transparent.
Møller modified general relativity by constructing

a new field theory in teleparallel space. The aim of this the-
ory was to overcome the problem of the energy-momentum
complex that appears in Riemannian space [27]. The field
equations in this new theory were derived from a La-
grangian which is not invariant under a local tetrad ro-
tation. Saez [28] generalized Møller theory into a scalar

tetrad theory of gravitation.Meyer [29] showed that Møller
theory is a special case of Poincaré gauge theory [30, 31].
In teleparallel gravity, the super-potential of Møller is

given by Mikhail et al. [15] as

Uνβµ =
(−g)1/2

2κ
P τνβχρσ

[
Φρgσχgµτ −λgτµξ

χρσ

− (1−2λ)gτµξ
σρχ
]
, (22)

where ξαβµ = eiαe
i
β;µ is the con-torsion tensor and e

µ
i is

the tetrad field defined uniquely by gαβ = eαi e
β
j η
ij (here

ηij is the Minkowski space-time). κ is the Einstein con-
stant and λ is a free-dimensionless coupling parameter of
teleparallel gravity. For the teleparallel equivalent of gen-
eral relativity, there is a specific choice of this constant.
Φµ is the basic vector field given by

Φµ = ξ
ρ
µρ (23)

and P τνβχρσ can be found by

P τνβχρσ = δ
τ
χg
νβ
ρσ + δ

τ
ρg
νβ
σχ− δ

τ
σg
νβ
χρ , (24)

with gνβρσ being a tensor defined by

gνβρσ = δ
ν
ρδ
β
σ − δ

ν
σδ
β
ρ . (25)

The energy-momentum density is defined by

Ξβα = U
βλ
α,λ , (26)

where a comma denotes ordinary differentiation. The en-
ergy is expressed by a surface integral:

E = lim
r→∞

∫
r=constant

U0ζ0 ηζdS , (27)

where ηζ is the unit three-vector normal to the surface
element dS. Now, we are interested in finding the total
energy distribution. Since the intermediary mathematical
expositions are lengthy, we give only the final result. To
find the super-potential of Møller, first we can calculate
the required non-vanishing of the basic vector field Φµ and
the con-torsion tensor ξαβµ. After making some calcula-
tions [32, 33], the required non-vanishing components of
ξαβµ and Φµ are obtained as follows:
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ξ001 =−ξ
1
11 =

[
ln

√
1−
2M

r
+
Q2

r2
+
r2

l2

]

r

, (28)

ξ122 =−r

[√
1−
2M

r
+
Q2

r2
+
r2

l2

]
, (29)

ξ133 = ξ
1
22 sin

2 θ , (30)

ξ221 = ξ
3
31 = r

−1 , (31)

ξ332 = ξ
3
23 = cot θ , (32)

ξ233 =− sin θ cos θ, (33)

ξ212 = ξ
3
13 =

[
r

(√
1−
2M

r
+
Q2

r2
+
r2

l2

)]−1
, (34)

Φ1 =−

[
ln

√
1−
2M

r
+
Q2

r2
+
r2

l2

]
r

+2

[
r

(√
1−
2M

r
+
Q2

r2
+
r2

l2

)]−1
, (35)

Φ2 = cot θ . (36)

Substituting this results into (22), we obtain the non-
vanishing required for Møller’s super-potential Uνβµ as
follows:

U010 =
2 sin θ

κ

[
M −

Q2

r
+
r3

l2

]
. (37)

Using the above result in the energy integral, we find the
following energy for the RN Ads black hole:

E(r) =M −
Q2

r
+
r3

l2
. (38)

We can easily see that the energy depends on the massM
and chargeQ of the RN AdS black hole and the cosmologi-
cal constant Λ.

3 Discussion

The localization of energy-momentum in general relativ-
ity has been debated since the beginning of relativity. The
energy-momentum pseudotensors are not tensorial objects
and one is forced to use “Cartesian” coordinates. Because
of these reasons, this topic has not been considered in an
exact way for a long time. However, after work by Virb-
hadra, Rosen, Chamorro and Aguirregabiria [11], this sub-
ject was re-opened. In addition to this, Virbhadra [12]
underlined that, although the energy-momentum prescrip-
tions are not tensorial objects, they do not disturb the prin-
ciple of general covariance, as the equations defining the
local conservation laws with these objects are covariant. In
another study, Chang, Nester and Chen [36] obtained thr
result that there exists a direct relationship between quasi-
local and pseudotensor expressions, since every energy-
momentum pseudotensor is associated with a legitimate
Hamiltonian boundary term.
In general relativity, several studies have been de-

voted to a calculation of the energy (due to matter plus

fields) distribution for a given space-time. For example,
Chamorro–Virbhadra [11] and Xulu [13] showed, consider-
ing the general relativity analogs of the Einstein andMøller
definitions, that the energy of a charged dilation black hole
depends on the value h which controls the coupling be-
tween the dilation and the Maxwell fields. We have

EEinstein =M −
Q2

2r
(1−h2)

EMøller =M −
Q2

r
(1−h2) . (39)

Also, Virbhadra [12] and Xulu [13] obtained that the en-
ergy distribution in the sense of Einstein and Møller dis-
agree in general. Next, Lessner [14] showed that the Møller
energy-momentum complex is a powerful concept for en-
ergy and momentum.
In this paper, to calculate the energy distribution (due

to matter plus fields) associated with the RN AdS black
holes, we investigated the Møller energy-momentum defin-
ition in both general relativity and teleparallel gravity. We
obtained the result that the energy is the same in both of
these different gravitation theories and also found that the
energy depends on the mass M and charge Q of the RN
AdS black hole and cosmological constant Λ. According to
the Cooperstock hypothesis [2], the energy is confined to
the region where the energy-momentum tensor of matter
and all non-gravitational fields is non-vanishing. Radin-
schi [13] found that the Einstein and Tolman prescriptions
give the same energy for the RN AdS black hole, which is
given by

ET(r) =EE(r) =M −
Q2

2r
+
r3

2l2
. (40)

Using the Møller complex, we found the energy of the RN
AdS black hole in both general relativity and teleparallel
gravity and showed that both of them give the same result,
which is given by

EM(r) =M −
Q2

r
+
r3

l2
. (41)

The result supports the idea that the energy distributions
in the senses of Einstein and Møller disagree in general.
The difference between these two definitions is given by

EE(r)−EM(r) =∆(E) =
Q2

2r
−
r3

2l2
. (42)

In the limits of Λ→ 0 and Q→ 0 the Einstein and Møller
definitions give the same energy, which is obtained as
EE(r) =EM(r) =M .
In some special cases, the RN AdS black hole is reduced

to the black holes known whose energies have been already
calculated.

1. Schwarzschild AdS limit.
We first consider the Schwarzschild AdS case. In this
case, the RN AdS black hole is easily reduced to the
Schwarzschild AdS black hole in the limit of Q→ 0 (or
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without charge). From (21), the total energy becomes

E(r) =M +
r3

l2
. (43)

The result is the same as that obtained by Saltı and Ay-
dogdu [34] for the Schwarzschild AdS black hole.
2. RN limit.
The other limit is Λ→ 0 (or without cosmological
constant). In this limit, the line-element (1) describes
spherically symmetric solutions. From (21), the total
energy becomes

E(r) =M −
Q2

r
. (44)

This result is also calculated by Chamorro and Virb-
hadra [11] for a charged dilaton black hole.
3. Schwarzschild limit.
When Λ→ 0 and Q→ 0, the line-element (1) describes
the Schwarzschild space. In this limit, the total energy
is found to be

E(r) =M . (45)

Moreover, this paper corroborates a) the importance of the
energy-momentum definitions in the evaluation of the en-
ergy distribution of a given space-time; b) the viewpoint
of Lessner [14]; c) that the energy distribution in the sense
of Einstein and Møller disagree in general and d) that the
Møller definition of the energy-momentum allows one to
make calculations in any coordinate system.
Finally, the energy obtained is also independent of the

teleparallel dimensionless coupling constant, which means
that it is valid not only in the teleparallel equivalent of gen-
eral relativity, but also in any teleparallel model.
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